Factor Analysis for Mixed Data
Usually, as a factor analysis approach, we use the principal component analysis (PCA) when the active variables are quantitative; the multiple correspondence analysis (MCA) when they are all categorical. But what to do when we have a mix of these two types of variables? A possible strategy is to discretize the quantitative variables and use the MCA. But this procedure is not recommended if we have a small dataset (a few number of instances), or if the number of qualitative variables is low in comparison with the number of quantitative ones. In addition, the discretization implies a loss of information. The choice of the number of intervals and the calculation of the cut points are not obvious. Another possible strategy is to replace each qualitative variable by a set of dummy variables (a 0/1 indicator for each category of the variable to recode). Then we use the PCA. This strategy has a drawback. Indeed, because the dispersions of the variables (the quantitative variables and the indi...